

US005179071A

United States Patent [19]

Ekin et al.

[11] Patent Number:

5,179,071

[45] Date of Patent:

Jan. 12, 1993

[54] HIGH T_c SUPERCONDUCTOR CONTACT UNIT HAVING LOW INTERFACE RESISTIVITY

[75] Inventors: John W. Ekin, Boulder, Colo.; Armand J. Panson; Betty A.

Blankenship, both of Pittsburgh, Pa.

[73] Assignees: The United States of America as

represented by the Secretary of Commerce, Washington, D.C.; Westinghouse Electric Corp.,

Pittsburgh, Pa.

[21] Appl. No.: 641,405

[22] Filed: Jan. 15, 1991

Related U.S. Application Data

[60] Division of Ser. No. 274,881, Nov. 22, 1988, Pat. No. 5,015,620, Continuation-in-part of Ser. No. 117,259, Nov. 6, 1987, Pat. No. 4,963,523.

[51]	Int. Cl. ⁵	B05D 5/12
		505/1 ; 505/706;
		427/62; 427/125

[56] References Cited

U.S. PATENT DOCUMENTS

4,963,523	10/1990	Ekin et al.	 505/1
5,015,620	5/1991	Ekin et al.	 505/1

FOREIGN PATENT DOCUMENTS

58-087844 5/1983 Japan .

OTHER PUBLICATIONS

Tzeng et al., "High Performance Silver Ohmic Contacts to YBa₂Cu₃O_{6+X} Superconductors", Appl. Phys. Lett. 52(2) Jan. 1988 pp. 155-156. Sugimoto et al., "Low Resistance Ohmic Contact for

the Oxide Superconductor Eu Ba₂ Cu₃ O_{2 y}," Jpn. J. Appl. Phys. 27(5) May 1988 pp. 864–866.

Van der Maas et al., *Nature* vol. 328, Aug. 13, 1987, pp. 603-604.

McCallum et al. "Problems In the Production of YB_a^2 - Cu_3O_x Superconducting Wire", Advanced Ceramic Materials-Ceramic Superconductors, vol. 2, No. 33 (Jul. 1987) pp. 388-400.

Wu et al. "Epitaxial ordering of oxide superconductor thin films on (100) SrTiO₃ prepared by pulsed laser evaporation", Applied Physics Letters, vol. 51, No. 11 (Sep. 1987) pp. 861–863.

Ginley et al., "Grain Boundary Superconductivity in the YBaCuO System", MRS Conf. on High T_c Superconductors, Apr. 23-24, 1987, pp. 201-204.

Schiller et al. "Metallization of Ceramics for Electronic Components by Magnetron-Plasmatron Coating", Thin Solid Film, 72 (1980) pp. 313-326.

Primary Examiner—Michael Lusignan Assistant Examiner—Roy V. King Attorney, Agent, or Firm—Harris & Burdick

[57] ABSTRACT

A high- T_c superconductor contact unit having low interface resistivity is disclosed, as is a method for making the unit. An inert metal is deposited on the surface of the superconductor, which surface is preferably non-degraded, to form a unit with the surface of the superconductor, and where temperatures as high as 500° C. to 700° C. can be tolerated, the unit is oxygen annealed to establish a still lower surface resistivity between the surface of the high- T_c superconductor and the inert metal, including a low surface resistivity of about $10^{-10}\Omega$ -cm² at high- T_c superconductor operating temperatures. The superconductor is a metal-oxide superconductor, and may be rare earth, thallium, or bismuth based.

13 Claims, 2 Drawing Sheets